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SPEC Power 

§ SPEC provides a standard methodology to measure and report power usage which 
can be incorporated into a SPEC benchmark. 

§ Normalizes the power usage across the full run of the suite 
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Impact of Clock Boost (result #13, #14, and #15, K40c, base, ECC on) 
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SPEC ACCEL   

§ Currently SPEC ACCEL supports OpenACC 
§ We are working on porting SPEC to other programming models such as: 
□ OpenMP 4.1 

§ SPEC ACCEL can be used for research to explore new programming models: 
□ Extensions for OpenACC and OpenMP 4.1 
§  Flexible directives to improve portability 

□ Exascale runtimes: OCR, ParalleX, Parsec with OpenACC/OpenMP 
□ Hybrid programming: MPI + OpenMP 4.0, etc 
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OpenACC @ SPEC 

§ OpenACC has been a key strategy for portable programming of accelerators since 
it’s the first working directive based solution 

§ Several current implementations of OpenACC (PGI, Cray) 
§ Growing breadth of support for OpenACC 
□ GCC, Pathscale, several research compilers 

§ Plan to port benchmarks to OpenMP 4.1 will help our users 
□ This transition is likely to occur in the next year or so.  
□ There are some technical challenges that OpenMP 4.1 implementers are solving 
§  E.g. Simulating SIMD on GPUs 
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OpenMP and OpenACC progress 
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Tools. 
Effective parallelization/vectorization of C++ 

Programming models must evolve before they can stabilize 

Roughly 
similar 

•  OpenACC innovation continues, OpenMP adopts relevant features 
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Porting OpenACC to OpenMP 4 

§ Compare OpenMP 4.1 accelerator 
extension with OpenACC 
□ Understand mapping 
□ Understand impact of  newer OpenACC 

features 

§ OpenACC is evolving with new features 
which may impact OpenMP 4.1 or 5. 

§ OpenACC interoperability with OpenMP 
is important for the transition 

§ Current application investments in 
OpenACC porting are preserved when 
porting to OpenMP 

OpenACC 2.0 OpenMP 4.0 

parallel target 

parallel/gang/workers/vector target teams/parallel/simd 

data target data 

parallel loop teams/distribute/parallel for 

update target update 

cache 

wait OpenMP 4.1 draft 

declare declare target 

data enter/exit OpenMP 4.1 draft 

routine declare target 

async wait OpenMP 4.1 draft 

device type OpenMP 4.1 draft 

tile 

host data OpenMP 4.1 draft 
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Converting OpenACC to OpenMP 4 

§  Many constructs currently translate directly from OpenACC to OpenMP 
§  Some constructs are present in one but not the other 
§  Also, at some points there are subtle differences, e.g., OpenACC allows the compiler more discretion 

regarding how loops are mapped to hierarchical parallelism 
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Translating OpenACC to OpenMP 4: Procedure (1) 

1.  The user must modify any OpenACC constructs for which no equivalent counterpart exists in 
OpenMP: 

□  Explicit data regions 
□  kernels directive 
□  device_type clause 
□  host_data and link clauses 
□  cache directive 
□  Complex use of asynchronous streams 
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Translating OpenACC to OpenMP 4:Procedure (2) 

2.  Translate data regions: 
□  acc data à omp target data 
□  create(...) à map(alloc:...) 
□  pcopy(...) à map(tofrom:...) 
□  pcopyin(...) ! map(to:...) 
□  pcopyout(...) ! map(from:...) 
□  use of async(…) can be replaced by use of OpenMP CPU threads or tasks to handle transfers 
□  if multiple devices used, replace calls to acc_set_device_num(…) with device(…) clause 
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Translating OpenACC to OpenMP 4: Procedure (3) 

3.  Translate data update operations: 
□  acc update à omp target update 
□  host(...) ! from(...) 
□  self(...) ! from(:...) 
□  device(...) ! to(...) 
□  use of async(…) can be replaced by use of OpenMP CPU threads or tasks to handle transfers 
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Translating OpenACC to OpenMP 4: Procedure (4) 

4.  Translate accelerator parallel regions: generally, 
□  acc parallel ! omp target teams 
□  acc loop gang ! omp distribute 
□  acc loop worker ! omp parallel for [simd] 
□  acc loop vector ! omp simd 
□  acc loop independent -> teams|parallel for|simd 
□  gang(...) ! dist_schedule(...) 
□  num_gangs(...) ! num_teams(...) 
□  num_workers(...) ! thread_limit(...) 
□  vector_length(...) ! safelen(...) 
□  use of async(…) can be replaced by use of OpenMP CPU threads or tasks to handle device execution 
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Translating OpenACC to OpenMP 4: Procedure (5) 

5.  Adjust function attribute specifiers: 
□  acc routine ! omp declare target / end declare target 
□  OpenACC gang, worker, vector, seq clauses have no exact counterpart in OpenMP 
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Example: 303.ostenci 

void cpu_stencil(float c0,float c1, float *A0,float * Anext,const int nx, const int ny, const int nz) 
{ 
 
  int i, j, k; 
#pragma acc kernels  pcopyin(A0[0:nx*ny*nz]), pcopyout(Anext[0:nx*ny*nz]) 
  { 
#pragma acc loop independent vector 
        for(i=1;i<nx-1;i++) 
        { 
#pragma acc loop independent gang vector 
                for(j=1;j<ny-1;j++) 
                { 
#pragma acc loop independent gang vector 
                        for(k=1;k<nz-1;k++) 
                        { 
                                Anext[Index3D (nx, ny, i, j, k)] = 
                                (A0[Index3D (nx, ny, i, j, k + 1)] + 
                                A0[Index3D (nx, ny, i, j, k - 1)] + 
                                A0[Index3D (nx, ny, i, j + 1, k)] + 
                                A0[Index3D (nx, ny, i, j - 1, k)] + 
                                A0[Index3D (nx, ny, i + 1, j, k)] + 
                                A0[Index3D (nx, ny, i - 1, j, k)])*c1 
                                - A0[Index3D (nx, ny, i, j, k)]*c0; 
                        } 
                } 
        } 
  } 
} 
 
 

void cpu_stencil(float c0,float c1, float *A0,float *Anext,const int nx, const int ny, const int 
nz) 
{ 
  int i, j, k; 
  int size=nx*ny*nz; 
#pragma omp target map(alloc:A0[0:size], Anext[0:size]) 
#pragma omp teams distribute parallel for collapse(2) 
        for(k=1;k<nz-1;k++) 
        { 
                for(j=1;j<ny-1;j++) 
                { 
#pragma omp simd 
                        for(i=1;i<nx-1;i++) 
                        { 
                                Anext[Index3D (nx, ny, i, j, k)] = 
                                (A0[Index3D (nx, ny, i, j, k + 1)] + 
                                A0[Index3D (nx, ny, i, j, k - 1)] + 
                                A0[Index3D (nx, ny, i, j + 1, k)] + 
                                A0[Index3D (nx, ny, i, j - 1, k)] + 
                                A0[Index3D (nx, ny, i + 1, j, k)] + 
                                A0[Index3D (nx, ny, i - 1, j, k)])*c1 
                                - A0[Index3D (nx, ny, i, j, k)]*c0; 
                        } 
                } 
  } 
} 
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OpenACC  OpenMP 4.0 



Summary 

§  Power measurements are a useful addition for energy-to-solution comparisons 

§  OpenMP 4 and OpenACC support for accelerator devices is similar in many respects 
§  Porting SPEC ACCEL to OpenMP 4 is straight forward 
□  Challenges: maturity of compilers 

§  Application developers should be aware of similarities and differences in order to develop future-
proofed code that can run well under either API 
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Supplementary slides 
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OpenACC Example: 
Gang, Workers and Vector in a Grid 
§  Directives used to map parallel loops to hierarchical 

parallelism on accelerator 
§  Execution configuration determined by the compiler 

or configured manually 
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Grid with ‘gang’ number of blocks 

Block 

Block with ‘worker’ 
number of threads 

Vector: the number of inner loop 
iterations to be executed by a thread 

#pragma	acc	kernels		
{	
#pragma	acc	loop	independent	
		for	(int	i	=	0;	i	<	n;	++i){	
				for	(int	j	=	0;	j	<	n;	++j){	
						for	(int	k	=	0;	k	<	n;	++k){	
								B[i][j*k%n]	=	A[i][j*k%n];	
						}	
				}	
		}	
#pragma	acc	loop	gang(NB)	worker(NT)	
		for	(int	i	=	0;	i	<	n;	++i){	
				#pragma	acc	loop	vector(NI)	
				for	(int	j	=	0;	j	<	m;	++j){		
						B[i][j]	=	i	*	j	*	A[i][j];	
				}	
		}	
}	



Challenges with directive-based programming models 

§  How to specify the in-node parallelism in the application 
□  Loop based parallelism is not enough for future systems 

§  How to efficiently map the parallelism of the application to the hardware 
□  How to schedule work to multiple accelerators within the node? 
□  How to schedule work to within accelerators while being portable 

§  How to transfer data across different types of memory 
□  Problem may go away but is important for data locality 

§  How to specify different memory hierarchies in the programming model 
□  Shared memory within GPU, etc  

§  Tools APIs 
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