
Advancing SPEC benchmarks
Oscar Hernandez, Wayne Joubert, ORNL

Guido Juckeland, Technische Universität Dresden

Slides 8-23: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with the DOE Public Access Plan.
 (http://energy.gov/downloads/doe-public-access-plan).

Contents

•  Using power measurements

•  Porting to new platforms (SPEC ACCEL OpenMP 4.0 Target Directives)

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 2

Contents

•  Using power measurements

•  Porting to new platforms (SPEC ACCEL OpenMP 4.0 Target Directives)

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 3

SPEC Power

§ SPEC provides a standard methodology to measure and report power usage which
can be incorporated into a SPEC benchmark.

§ Normalizes the power usage across the full run of the suite

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 4

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 5

Impact of Clock Boost (result #13, #14, and #15, K40c, base, ECC on)

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

810 MHz speedup 810 MHz energy 875 MHz speedup 875 MHz energy

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 6

Contents

•  Using power measurements

•  Porting to new platforms (SPEC ACCEL OpenMP 4.0 Target Directives)

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 7

SPEC ACCEL

§ Currently SPEC ACCEL supports OpenACC
§ We are working on porting SPEC to other programming models such as:
□ OpenMP 4.1

§ SPEC ACCEL can be used for research to explore new programming models:
□ Extensions for OpenACC and OpenMP 4.1
§  Flexible directives to improve portability

□ Exascale runtimes: OCR, ParalleX, Parsec with OpenACC/OpenMP
□ Hybrid programming: MPI + OpenMP 4.0, etc

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 8

OpenACC @ SPEC

§ OpenACC has been a key strategy for portable programming of accelerators since
it’s the first working directive based solution

§ Several current implementations of OpenACC (PGI, Cray)
§ Growing breadth of support for OpenACC
□ GCC, Pathscale, several research compilers

§ Plan to port benchmarks to OpenMP 4.1 will help our users
□ This transition is likely to occur in the next year or so.
□ There are some technical challenges that OpenMP 4.1 implementers are solving
§  E.g. Simulating SIMD on GPUs

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 9

OpenMP and OpenACC progress

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

OpenMP
3.0

OpenMP 3.1

OpenMP 4.0

•  TARGET
•  TARGET

DATA
•  DECLARE

TARGET
•  TARGET

UPDATE
•  TEAMS
•  DISTRIBUTE

OpenMP
4.1

OpenMP
5.0

OpenACC
1.0

•  KERNEL
•  PARALLEL
•  DATA
•  LOOP

warp,
worker,
vector

•  UPDATE
•  CACHE

OpenACC
2.0

•  Nested
parallelism

•  ASYNC wait
•  ASYNC

compute
•  ASYNC data

transfer
•  TILE

OpenACC
2.5

Roughly
similar

Portability across hardware platforms
 Increased efficiency & performance
Tools.
Effective parallelization/vectorization of C++

Programming models must evolve before they can stabilize

Roughly
similar

•  OpenACC innovation continues, OpenMP adopts relevant features

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 10

Porting OpenACC to OpenMP 4

§ Compare OpenMP 4.1 accelerator
extension with OpenACC
□ Understand mapping
□ Understand impact of newer OpenACC

features

§ OpenACC is evolving with new features
which may impact OpenMP 4.1 or 5.

§ OpenACC interoperability with OpenMP
is important for the transition

§ Current application investments in
OpenACC porting are preserved when
porting to OpenMP

OpenACC 2.0 OpenMP 4.0

parallel target

parallel/gang/workers/vector target teams/parallel/simd

data target data

parallel loop teams/distribute/parallel for

update target update

cache

wait OpenMP 4.1 draft

declare declare target

data enter/exit OpenMP 4.1 draft

routine declare target

async wait OpenMP 4.1 draft

device type OpenMP 4.1 draft

tile

host data OpenMP 4.1 draft
November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 11

Converting OpenACC to OpenMP 4

§  Many constructs currently translate directly from OpenACC to OpenMP
§  Some constructs are present in one but not the other
§  Also, at some points there are subtle differences, e.g., OpenACC allows the compiler more discretion

regarding how loops are mapped to hierarchical parallelism

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 12

Translating OpenACC to OpenMP 4: Procedure (1)

1.  The user must modify any OpenACC constructs for which no equivalent counterpart exists in
OpenMP:

□  Explicit data regions
□  kernels directive
□  device_type clause
□  host_data and link clauses
□  cache directive
□  Complex use of asynchronous streams

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 13

Translating OpenACC to OpenMP 4:Procedure (2)

2.  Translate data regions:
□  acc data à omp target data
□  create(...) à map(alloc:...)
□  pcopy(...) à map(tofrom:...)
□  pcopyin(...) ! map(to:...)
□  pcopyout(...) ! map(from:...)
□  use of async(…) can be replaced by use of OpenMP CPU threads or tasks to handle transfers
□  if multiple devices used, replace calls to acc_set_device_num(…) with device(…) clause

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 14

Translating OpenACC to OpenMP 4: Procedure (3)

3.  Translate data update operations:
□  acc update à omp target update
□  host(...) ! from(...)
□  self(...) ! from(:...)
□  device(...) ! to(...)
□  use of async(…) can be replaced by use of OpenMP CPU threads or tasks to handle transfers

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 15

Translating OpenACC to OpenMP 4: Procedure (4)

4.  Translate accelerator parallel regions: generally,
□  acc parallel ! omp target teams
□  acc loop gang ! omp distribute
□  acc loop worker ! omp parallel for [simd]
□  acc loop vector ! omp simd
□  acc loop independent -> teams|parallel for|simd
□  gang(...) ! dist_schedule(...)
□  num_gangs(...) ! num_teams(...)
□  num_workers(...) ! thread_limit(...)
□  vector_length(...) ! safelen(...)
□  use of async(…) can be replaced by use of OpenMP CPU threads or tasks to handle device execution

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 16

Translating OpenACC to OpenMP 4: Procedure (5)

5.  Adjust function attribute specifiers:
□  acc routine ! omp declare target / end declare target
□  OpenACC gang, worker, vector, seq clauses have no exact counterpart in OpenMP

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 17

Example: 303.ostenci

void cpu_stencil(float c0,float c1, float *A0,float * Anext,const int nx, const int ny, const int nz)
{

 int i, j, k;
#pragma acc kernels pcopyin(A0[0:nx*ny*nz]), pcopyout(Anext[0:nx*ny*nz])
 {
#pragma acc loop independent vector
 for(i=1;i<nx-1;i++)
 {
#pragma acc loop independent gang vector
 for(j=1;j<ny-1;j++)
 {
#pragma acc loop independent gang vector
 for(k=1;k<nz-1;k++)
 {
 Anext[Index3D (nx, ny, i, j, k)] =
 (A0[Index3D (nx, ny, i, j, k + 1)] +
 A0[Index3D (nx, ny, i, j, k - 1)] +
 A0[Index3D (nx, ny, i, j + 1, k)] +
 A0[Index3D (nx, ny, i, j - 1, k)] +
 A0[Index3D (nx, ny, i + 1, j, k)] +
 A0[Index3D (nx, ny, i - 1, j, k)])*c1
 - A0[Index3D (nx, ny, i, j, k)]*c0;
 }
 }
 }
 }
}

void cpu_stencil(float c0,float c1, float *A0,float *Anext,const int nx, const int ny, const int
nz)
{
 int i, j, k;
 int size=nx*ny*nz;
#pragma omp target map(alloc:A0[0:size], Anext[0:size])
#pragma omp teams distribute parallel for collapse(2)
 for(k=1;k<nz-1;k++)
 {
 for(j=1;j<ny-1;j++)
 {
#pragma omp simd
 for(i=1;i<nx-1;i++)
 {
 Anext[Index3D (nx, ny, i, j, k)] =
 (A0[Index3D (nx, ny, i, j, k + 1)] +
 A0[Index3D (nx, ny, i, j, k - 1)] +
 A0[Index3D (nx, ny, i, j + 1, k)] +
 A0[Index3D (nx, ny, i, j - 1, k)] +
 A0[Index3D (nx, ny, i + 1, j, k)] +
 A0[Index3D (nx, ny, i - 1, j, k)])*c1
 - A0[Index3D (nx, ny, i, j, k)]*c0;
 }
 }
 }
}

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 18

OpenACC OpenMP 4.0

Summary

§  Power measurements are a useful addition for energy-to-solution comparisons

§  OpenMP 4 and OpenACC support for accelerator devices is similar in many respects
§  Porting SPEC ACCEL to OpenMP 4 is straight forward
□  Challenges: maturity of compilers

§  Application developers should be aware of similarities and differences in order to develop future-
proofed code that can run well under either API

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 19

We acknowledge the assistance of Wei Ding, Markus Eisenbach,
Christos Kartsaklis, David E. Bernholdt and Daniel Tian.

This research used resources of the Oak Ridge Leadership
Computing Facility at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department

of Energy under Contract No. DE-AC05-00OR22725.

This material is in part based upon work supported by the National
Science Foundation under Grant Number 1137097 and by the

University of Tennessee through the Beacon Project. Any
opinions, findings, conclusions or recommendations

expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science

Foundation or the University of Tennessee.

ACK

§  Guido Juckeland,
guido.Juckeland@tu-dresden.de

§  Wayne Joubert, joubert@ornl.gov
§  Oscar Hernandez, oscar@ornl.gov

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 20

Supplementary slides

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 21

OpenACC Example:
Gang, Workers and Vector in a Grid
§  Directives used to map parallel loops to hierarchical

parallelism on accelerator
§  Execution configuration determined by the compiler

or configured manually

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 22

Grid with ‘gang’ number of blocks

Block

Block with ‘worker’
number of threads

Vector: the number of inner loop
iterations to be executed by a thread

#pragma	acc	kernels		
{	
#pragma	acc	loop	independent	
		for	(int	i	=	0;	i	<	n;	++i){	
				for	(int	j	=	0;	j	<	n;	++j){	
						for	(int	k	=	0;	k	<	n;	++k){	
								B[i][j*k%n]	=	A[i][j*k%n];	
						}	
				}	
		}	
#pragma	acc	loop	gang(NB)	worker(NT)	
		for	(int	i	=	0;	i	<	n;	++i){	
				#pragma	acc	loop	vector(NI)	
				for	(int	j	=	0;	j	<	m;	++j){		
						B[i][j]	=	i	*	j	*	A[i][j];	
				}	
		}	
}	

Challenges with directive-based programming models

§  How to specify the in-node parallelism in the application
□  Loop based parallelism is not enough for future systems

§  How to efficiently map the parallelism of the application to the hardware
□  How to schedule work to multiple accelerators within the node?
□  How to schedule work to within accelerators while being portable

§  How to transfer data across different types of memory
□  Problem may go away but is important for data locality

§  How to specify different memory hierarchies in the programming model
□  Shared memory within GPU, etc

§  Tools APIs

November 15, 2015 SC'15 SPEC Tutorial, Part E: Advancing SPEC benchmarks 23

