

SPEC OPEN SYSTEMS GROUP

CLOUD COMPUTING WORKING GROUP

Report on Cloud

Computing to the

OSG Steering Committee

Table of Contents

Introduction and Objectives .. 3

1 Cloud Computing .. 5

1.1 Definition of the Cloud .. 5
1.1.1 Characteristics .. 5
1.1.2 Service Models ... 6
1.1.3 Deployment Models .. 6

1.2 Interested parties of a Cloud Benchmark 6
1.2.1 Participants ... 7
1.2.2 Cloud Benchmark Audience Types .. 7

1.3 Cloud Computing Use Cases ... 8
1.3.1 Computing Use Cases .. 8
1.3.2 Use Case to Customer Map ... 9
1.3.3 Use Case to Processing Type Map .. 10

1.4 Existing Cloud Frameworks .. 11

2 Benchmark Considerations ... 12

2.1 What is a Cloud SUT? .. 12

2.2 SUT Components ... 13

2.3 Full Disclosure Report (FDR) Requirements 14

3 Relevant Cloud Metrics ... 16

3.1 Elasticity ... 16

3.2 Response Time .. 19

3.3 Throughput ... 19

3.4 Variability .. 21

3.5 Durability .. 21

3.6 Reliability .. 21

3.7 Availability .. 22

3.8 Power ... 23

3.9 Price ... 23

3.10 Density ... 24

4 What Makes a Benchmark a Cloud Benchmark? 24

4.1 Cloudizing an Existing Benchmark 25

4.2 Cloudize Existing SPEC Benchmarks 26

4.3 Dos and Don’ts of Benchmarking a Cloud 27

5 Tools to Measure Cloud Metrics 28

5.1 AEOLUS (Red Hat) .. 28

5.2 BITT (Intel) ... 29

5.3 CloudBench (IBM) .. 30

6 OSG Cloud Subcommittee .. 31

6.1 Cloud Subcommittee Charter ... 31

6.2 Subcommittee specific Issues .. 31

Appendix A. OSG Cloud Contributors 32

Appendix B. Cloud Computing Use Cases 33

Appendix C. CloudBench Description 37
Introduction ... 37
Experiment 1 ... 41
Experiment 2 ... 42
How does CloudBench collect performance data? 45
How does CloudBench incorporate new benchmarks and workloads? . 47
CloudBench Instantiation on Amazon EC2 .. 47
Metrics .. 48
How is CloudBench different from SPECvirt? .. 49

Appendix D. Bibliography ... 50

O S G C L O U D W G

REPORT TO OSSC 3

Introduction and

Objectives

With Cloud Computing on the rise, there is a need to monitor and measure the

performance of cloud systems. To address this issue, SPEC started two

separate working groups to investigate this area: one under the Research Group

(RG) and the second under the Open Systems Group (OSG). This document

covers the investigations and recommendations from the OSGCloud working

group.

The OSGCloud working group was formed with the main goal to research and

recommend application workloads for cloud computing in collaboration with

other osg sub-committees and the Research working group. The list of goals

included the following:

 Help develop a cohesive cloud picture for OSG.

 Develop a consensus definition of cloud computing.

 Identify where the working group fits within the OSG spectrum.

 Collaborate with OSG sub-committees to define the cloud picture.

 Recommend a common framework for cloud benchmarks.

 Investigate potential cloud metrics and identify which metrics are most

relevant for various SPEC benchmarks.

 Create a set of guidelines for OSG subcommittees to use when they

create benchmarks in the cloud computing context.

 Determine and recommend application workloads for cloud computing.

O S G C L O U D W G

REPORT TO OSSC 4

In contrast, the RG Cloud Group takes a broader approach relevant for both

academia and industry. Benchmarks developed by this group are intended to be

used to gain larger understanding of Cloud behavior and performance. The

main goal of research benchmarks is to provide representative application

scenarios, defined at a higher level of abstraction that can be used as a basis to

evaluate early prototypes and research results as well as full-blown

implementations of Cloud platforms.

The OSG Cloud Working Group investigated its assigned goals from April

2011 to February 2012. The group based its definition and industry

conventions on the NIST Cloud Computing publication, originally published as

a draft, and ultimately a final document in September 2011. From this base, the

Working Group has identified three classes of interested parties to Cloud

benchmark results: Hardware/Software-Vendors, Cloud-Providers and End-

Consumers. These three parties form two distinct relationships which define

two types of benchmarks: Black Box and White Box. These two benchmark

types have both conflicting and common requirements, which are highlighted

throughout the document. We identified Cloud Computing specific metrics and

define them in Section 3. Some Cloud metrics will have benchmark specific

variations, while others remain constant across all benchmarks. Section 4.1 and

4.2 contain some initial steps to consider when converting a benchmark to run

in a Cloud.

The OSGCloud members recommend the following:

1) Creation of an OSG Cloud subcommittee with an initial charter described
in Section 6.1.

E X E C U T I V E

S U M M A R Y

O S G C L O U D W G

REPORT TO OSSC 5

1 Cloud Computing

1.1 Definition of the Cloud

We adopted the definition of cloud computing from the NIST Special Publication

No. 145 [(Mell & Grance, 2011)], which defines Cloud Computing as:

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or

service provider interaction.

Three roles exist within cloud computing. Cloud-Providers sell computing or

software services purchased by the End Customer/Consumer. A Cloud-Provider

builds its cloud using products from various Hardware and Software Vendors. See

Section 1.2 (Interested parties of a Cloud Benchmark) for a more detailed

discussion.

The NIST document describes five essential cloud characteristics, three service

models, and four deployment models. We briefly describe these below, based on

the NIST document.

1.1.1 Characteristics

Cloud Computing has five essential characteristics, namely:

1. On-demand self-service, where a consumer can provision compute and storage

capabilities without requiring human intervention from provider.

2. Broad network access, where a consumer can access compute and storage

capabilities over the network.

3. Resource pooling, where a provider groups together resources such as CPU,

memory, disk, and storage to serve multiple consumers.

4. Rapid elasticity, where resources used can be rapidly and in some cases

automatically increased or decreased to handle demand.

5. Measure service, where the service used a consumer is metered.

1 The definition does not mandate the use of virtualization for a Cloud.

O S G C L O U D W G

REPORT TO OSSC 6

1.1.2 Service Models

There are three service models for cloud computing. They affect the definition of a

System Under Test (SUT) for any cloud benchmarks. The following are a brief

description of the service models.

The Service Provider gives the End-Consumer the capability to the provision

processing, storage, network, and basic computing resources. They can also deploy

and run arbitrary operating systems. The End-Consumer does not manage or

control the underlying physical cloud infrastructure, but has control over the

operating system, assigned storage, deployed applications, and limited control of

select networking components (e.g., host firewalls).

The Service Provider gives the End-Consumer the capability to deploy consumer-

created or acquired applications created using programming, languages, libraries,

services, and tools supported by the Service Provider. The Service Provider retains

control and manages the underlying cloud infrastructure, including network,

servers, operating systems, and physical storage. End-Consumer has control over

the deployed applications and configuration settings for the application-hosting

environment.

The Service Provider gives End-Consumer the capability to use the provider’s

applications running on a cloud infrastructure. The applications are accessible from

various client devices through either a thin client interface, such as a web browser

(e.g., web-based email), or a program interface. The Service Provider retains

control and manages the underlying cloud infrastructure, including individual

applications, these application configurations, network, servers, operating systems,

and physical storage. The End-Consumer might have limited control of user-

specific application configuration settings.

1.1.3 Deployment Models

The NIST document defines four deployment models, namely,

The cloud is configured for exclusive use by one or more organizations.

The cloud is configured for use by the general public.

The cloud is a composition of distinct infrastructures in order to retain the

proprietary technology by the consumer.

The cloud is provisioned for exclusive use for a community of consumers.

1.2 Interested parties of a Cloud Benchmark

There are at least three categories interested in the development and use of a cloud

benchmark. Between these three parties exists two relationship types.

Infrastructure as a

Service (IaaS)

Platform as a

Service (PaaS)

Software as a

Service (SaaS)

Private cloud

Public cloud

Hybrid cloud

Community cloud

O S G C L O U D W G

REPORT TO OSSC 7

1.2.1 Participants

The three identified parties are:

build data centers using standard hardware, network, and management software.

Amazon, IBM, HP, VMWare, Microsoft, Oracle and Terremark are examples of

companies that provide public or enterprise IaaS, Paas or SaaS clouds. They will

be interested in publishing the benchmark results of their service offerings. They

would also be interested in the benchmark results of hardware, software or network

vendor products, and how these components support the performance of their

service.

provide the hardware (computers, blades, or servers) and software (virtualization,

management, automation) products used to build the cloud. AMD, HP, Intel, IBM,

VMWare, OpenStack, Oracle, Red Hat, and VMware are examples of companies

that might publish benchmark results for their customers.

cloud customers might use cloud benchmark results to help select a Cloud-

Provider. These are primarily businesses. While there exist several collaboration

and social apps used by individuals, the recommendations in this document will not

address the needs of this community. We restrict our attention to business users of

the cloud.

1.2.2 Cloud Benchmark Audience Types

Based on the above, use of cloud benchmarks fall into two broad categories:

Published by one or more Hardware/Software Vendors and used by Cloud-

Providers to determine the right set of hardware and software products to deploy in

their cloud. Cloud-Providers can also publish results of the hardware and software

components used in their cloud.

Published by Cloud-Providers and used by End-Consumers to determine the

appropriate cloud service provider for their application needs.

D I F F E R E N C E S

A given workload can be tested either in the black-box or white-box context. Each

has differing implications for reporting and comparability, usually addressable by

the Run Rules defined for the released benchmark.

The SUT’s exact engineering specifications is known and under the control of the

tester. The benchmark results allow full comparisons, similar to existing

benchmark results.

Cloud-Providers

Hardware and

Software Vendors

End-Consumers

White Box

benchmark

disclosures

Black Box

benchmark

disclosures

White Box
Benchmark

O S G C L O U D W G

REPORT TO OSSC 8

The Cloud-Provider provides a general specification of the SUT, usually in terms

of how the End-Consumer may be billed. For example, an end user of a cloud may

rent a cloud platform under the description of “2 compute units.” The exact

hardware details corresponding to these compute units may not be known. Due to

this vagueness or incompleteness, comparing benchmark results requires additional

information not currently collected or mandated. For example, the benchmark

disclosure may include additional conditions, such as time and place where

measurements were collected, or dynamic changes to the SUT during the collection

period.

1.3 Cloud Computing Use Cases

The OSG Working Group identified general classes of computing and mapped

these to the Research Group’s processing types.

1.3.1 Computing Use Cases

The general class of applications either use cloud computing infrastructure or might

transition all or subsets to cloud computing. See Appendix A for more details on

services and usage of each type.

Users access web servers to exchange messages with others, update information,

view recommendations or endorsements, and otherwise interact with other users,

both in real time and not.

The CloudBench/Olio benchmark currently simulates this collection of web server

activities, and scales by controlling the number of concurrent users.

A group of users share the same view and access into a data set. Access can be

through standard web browsers, custom plug-ins, or proprietary client software.

Private business e-mail servers can be easily moved to outsourced e-mail services.

Some of these companies run on private or public infrastructure clouds. More

sophisticated e-mail services or a portal site will interface with social networking,

calendar services, 3
rd

 party remote services, user profiling (for targeted ads), and

other non-e-mail things,

Many companies and groups are using the large clusters of hosts to evaluate large

data sets (log files; personal information; user comments on shows, books, or

events; interesting conversations), or extract sophisticated findings from multi-

layered data sets, with complex relationships.

Black Box
Benchmark

Social Networking

Collaboration

Mail / Messaging

Data Analytics

O S G C L O U D W G

REPORT TO OSSC 9

This computing category builds on large sets of both structured and unstructured

data for later use by other types.

These non-relational databases can support peta-byte scale data sets, distributed

across hundreds to thousands of machines. They are used where ‘weak consistency

guarantee’ policies suffice. Real-time web applications, document databases,

graph databases, key-value data stores are among some current applications of this

technology.

This long-standing processing type is characterized by high data I/O volumes and

well defined data sets. Both real-time and scheduled processing exist.

A group of machines maintain a coherent and shared data space used by many

other types. It is typically used by multi-layered software, that also have latency

requirements.

High-performance computing (HPC) uses supercomputers and computer clusters

to solve advanced computation problems. This genre of workloads also includes

engineering, simulation, graphics and data applications that run on cluster-based

systems.

Similar to social networking or collaboration, but also maintain time-sensitive

services

An increasing number of consumers access music, books, or videos from various

media distribution companies.

Digital VoIP services are replacing and expanding audio communications for many

consumers and companies. This includes both audio and video transmissions

across the Internet, with stringent latency and computational needs.

1.3.2 Use Case to Customer Map

The following table identifies potential customers. It identifies companies or

industries known to use the Research Group’s processing types. The OSG Working

Group also polled members and other interested parties as to the usefulness or

criticality of a cloud benchmark in this processing category.

Data Warehousing

/ Mining

NoSQL Databases

Business OLTP

Memory Cloud

HPC

On-line Gaming

Streaming

Audio/Video

Voice over IP

http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Computer_cluster

O S G C L O U D W G

REPORT TO OSSC 10

Processing

Types
Potential Audience

Survey

Score

Social

Networking

LinkedIn, Facebook, Twitter, Yelp,

Googleplus, Groupon, Goodreads,

Netflix (Social net component), Amazon

(Social net component), Workpress

3

Collaboration
WebEx Screen sharing, Citrix GoToMeeting,

Skype, Microsoft Live Meeting

Mail / Messaging

Cloud providers, existing Internet Service

providers (AOL, cable operators, internet

portals), E-mail Outsourcing providers, e-mail

filtering services, Mid to large sized

companies.

3.43

Data Analytics
Cloud providers, SaaS providers, mobile phone

companies
4.43

Data

Warehousing /

Mining

Cloud providers, 4

NoSQL

Databases

Amazon, Facebook, Twitter, Yahoo, Digg,

Hadoop users
2.44

Business OLTP Business users of databases, enterprises 3.56

Memory Cloud
Web Service users,

Social Network users
3

HPC Cloud service providers

On-line Gaming

Game providers,

Cloud providers for games;

Government, military

2.57

Streaming

audio/video

TV networks, Apple TV, Google TV, Internet

Radio, Netflix, iTune, YouTube, Online

Universities

VOIP SPEC SIP customers,

1.3.3 Use Case to Processing Type Map

The following table shows which (Research Group’s) Processing Type is present in

each Cloud Computing Use Case.

O S G C L O U D W G

REPORT TO OSSC 11

U
se

C

a
se

S
o
ci

a
l

N
et

w
o
rk

in
g

C
o
ll

a
b

o
ra

ti
o
n

M
a
il

 /
 M

es
sa

g
in

g
 (

IM
,
T

w
ee

ts
)

D
a
ta

 A
n

a
ly

ti
cs

D
a
ta

 W
a
re

h
o
u

si
n

g
 /

 M
in

in
g

N
o
S

Q
L

 D
a
ta

b
a
se

s

B
u

si
n

es
s

O
L

T
P

M
em

o
ry

 C
lo

u
d

H
P

C

O
n

-l
in

e
G

a
m

in
g

S
tr

ea
m

in
g

a
u

d
io

/v
id

eo

V
O

IP

Process Type

C
lo

u
d

Data-Intensive / Planned Batch Jobs         

Processing Pipelines       

Dynamic Websites  

Business Processing / OLTP /

Mission Critical applications
     

Latency Sensitive       

Application Extensions / Backends

for Mobile Communications
     

Bandwidth and Storage Intensive           

Mail Applications 

Others  

1.4 Existing Cloud Frameworks

The Research cloud working group has summarized a list of publicly

available cloud benchmarks.

http://research.spec.org/en/benchmarking-portal/links.html.

The OSG Cloud Working Group presents the following as

some of the better known and available cloud benchmarks.

Benchmark Features Source

YCSB  Evaluate performance of key-value based

databases

 Measures Elasticity

Yahoo! Research at

http://research.yahoo.com/Web_I

nformation_Management/YCSB

http://research.spec.org/en/benchmarking-portal/links.html
http://research.yahoo.com/Web_Information_Management/YCSB
http://research.yahoo.com/Web_Information_Management/YCSB

O S G C L O U D W G

REPORT TO OSSC 12

Benchmark Features Source

Cloudstone

/ Olio
 Workloads: Web 2.0, MySQL, PostgressSQL,

and Memcached

 By default, runs against Amazon EC2 but has

instructions on how to set up in other clouds

Berkeley RAD Lab project at

http://radlab.cs.berkeley.edu/wiki/

Projects/Cloudstone

Malstone  Distributed, data intensive computing

workload, using synthetic data to determine

infection rates by website to its visitors.

Open Cloud Consortium project

at

http://code.google.com/p/malgen/

Hadoop  Several workload types: cpu, map reduce,

machine learning, parallel computation,

distributed file system, and distributed

databases

 Used by many 3
rd

 party benchmarks

 No strict Run Rules

Open source project at

http://hadoop.apache.org

Cloud

Harmony
 Measure performance of black box cloud

deployments using various workloads

 Offers comparison of various benchmark

results as a paid service

http://www.CloudHarmony.com

2 Benchmark Considerations

2.1 What is a Cloud SUT?

Defining SUT for a cloud benchmark is challenging due to conflicting goals of

interested parties and different cloud service models. As discussed in earlier

sections, an End-Consumer does not have knowledge of the physical infrastructure

for IaaS, PaaS, or a SaaS service. However, Hardware and Software Vendors are

one of the interested parties in a cloud benchmark. In order for a cloud benchmark

to have any useful meaning for these vendors, the physical infrastructure should

also be part of the results that a cloud benchmark reports. However, mandating the

reporting of physical infrastructure results is problematic, because it will exclude

benchmarking many existing public Cloud-Providers.

The System Under Test (SUT) comprises all components (cloud service, hardware,

software, network connections within the SUT, and support services which are

being tested by the cloud workload or required by the specific benchmark run rules.

It does not include any client(s) or driver(s) necessary to drive the cloud workload

or the network connections between the driver(s) and SUT.

http://radlab.cs.berkeley.edu/wiki/Projects/Cloudstone
http://radlab.cs.berkeley.edu/wiki/Projects/Cloudstone
http://code.google.com/p/malgen/
http://hadoop.apache.org/
http://www.cloudharmony.com/

O S G C L O U D W G

REPORT TO OSSC 13

By existing SPEC benchmark convention, the System Under Test (SUT) comprises

all components (cloud service, hardware, software, network connections within the

SUT, and support services which are being tested by the cloud workload or

required by the specific benchmark run rules. It does not include any client(s) or

driver(s) necessary to generate the cloud workload, nor the network connections

between the driver(s) and SUT.

Mandating the disclosure of the physical infrastructure presents many problems due

to the conflicting goals of interested parties and different cloud service models.

Hardware and Software Vendors provide benchmark results to their, the Cloud-

Providers, who derive the most useful meaning through the detailed description of

the physical infrastructure and the corresponding results. However, an End-

Consumer has little to no knowledge of the Cloud-Provider’s physical

infrastructure for IaaS, PaaS, or a SaaS service. Providing such a detailed

description is impossible without a Cloud-Provider’s cooperation. Therefore, a

mandate that reports must include the details of the physical infrastructure is

problematic, because it will exclude benchmarking many existing public Cloud-

Providers.

2.2 SUT Components

The actual set of SUT’s constituent pieces differs based on the relationship between

the SUT and the tester.

The SUT consists of a description of the specific cloud offering used to run the

workload with sufficient detail to meet Full Disclosure Report (FDR)

Requirements as described in Section 2.3 and the specific benchmark's

reproducibility requirements on and instance of the same offering.

The SUT description can be more specific, similar to many existing SPEC

benchmarks. These SUT descriptions consist of:

 The host system(s) (including hardware and software) required to support

the Workload and databases.

 All network components (hardware and software) between host machines

which are part of the SUT and all network interfaces to the SUT.

 Components which provide load balancing within the SUT.

 All software that is required to build, deploys, and run the specific

benchmark workload.

Any components which are required to form the physical TCP/IP connections

(commonly known as the NIC, Network Interface Card) from the host system(s) to

the client machines are considered part of the SUT.

A basic configuration consisting of one or more switches between the Driver and

the SUT is not considered part of the SUT. However, if any software/hardware is

used to influence the flow of traffic beyond basic IP routing and switching, it is

considered part of the SUT. For example, when DNS Round Robin is used to

Black Box Cloud

White Box Cloud

Comment 1

Comment 2

O S G C L O U D W G

REPORT TO OSSC 14

implement load balancing, the DNS server is considered part of the SUT and

therefore it must not run on a driver client.

2.3 Full Disclosure Report (FDR) Requirements

For both Black Box and White Box cloud types, the Full Disclosure Report (FDR)

must include a detailed description of the SUT, often referred to as a 'Bill of

Materials' (BOM). The intent of the BOM is to enable a reviewer to confirm that

the tested configuration satisfies the run rule requirements and to document the

components used with sufficient detail to enable a customer to reproduce the tested

configuration and obtain pricing information from the supplying vendors for each

component of the SUT.

The SUT description or BOM must reflect the level of detail a customer would see

on an itemized bill. It should list individual items in the SUT that are not part of a

standard package. For each item, the BOM should include the item's supplier,

description, the item's ID (the code used by the vendor when ordering the item),

and the quantity of that item in the SUT.

For example, a black box SUT for Amazon EC2 may be described as:

Supplier: Amazon

Description: Small vm with
 1.7 GB memory

 1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)
 160 GB instance storage
 32-bit platform

I/O Performance: Moderate
Region: US East coast

Zone: portion with region where VM is hosted

 https://aws.amazon.com/ec2/instance-types/

ID: API name: m1.small
Quantity: 1 (collocation details if the quantity is greater than 1)

Date and time of use:

An example of a White Box description may be similar to the one here:

http://www.spec.org/jEnterprise2010/results/res2011q3/jEnterprise2010-
20110727-00023.html#bill_of_materials

https://aws.amazon.com/ec2/instance-types/
http://www.spec.org/jEnterprise2010/results/res2011q3/jEnterprise2010-20110727-00023.html%23bill_of_materials
http://www.spec.org/jEnterprise2010/results/res2011q3/jEnterprise2010-20110727-00023.html%23bill_of_materials

O S G C L O U D W G

REPORT TO OSSC 15

Supplier Description Product # Qty

Application Server
Oracle
Oracle
Oracle
Oracle
Oracle
Oracle
Oracle

Sun Blade X6270 M2 Base Assembly
3.46GHz Intel 6-Core Xeon X5690
4GB Registered DDR3-1333 DIMM
Memory filler panel
300GB - 10K RPM SAS Disk
6Gbps SAS-2 RAID Expansion Module
Premier Support for Systems 3 years

X6270-AB
X6270-AA-16H3460
4910A
5879A-N
RB-SS2CF-300G10K2
SG-SAS6-R-REM-Z
Q-PREM-SPRT-SYS

1
2

12
6
4
1
1

Database Server

Oracle
Oracle
Oracle
Oracle
Oracle
Oracle
Oracle
Oracle

Sun Blade X6270 M2 Base Assembly
3.46GHz Intel 6-Core Xeon X5690
8GB Registered DDR3-1333 DIMM
2.5in HDD Filler Panel
Sun Storage 6180 Array
300 GB - 15000 rpm FC-AL HDD
6Gbps SAS-2 RAID Expansion Module
Premier Support for Systems 3 years

X6270-AB
X6270-AA-16H3460
4911A
6331A-N
TA6180R11A2-O-N
TC-FC1CF-300G15K-
N
SG-SAS6-R-REM-Z
Q-PREM-SPRT-SYS

1
2

18
2
2

32
1
1

Blade Server Enclosure
Oracle
Oracle

Oracle

Oracle

Oracle
Oracle

Sun Blade 6000 Modular System
Dual 10GbE 10GBE SFP+ PCIe
Express Module
10 GigE Dual Rate SFP+ SR
Transceiver, MMF
8GB PCI-E Dual FC/GbE Host Adapter
EM
Power cord, QTY4, AC Input 20A
Premier Support for Systems 3 years

A90-D
X1110A-Z

2129A

SG-XPCIEFCGBE-
Q8-N

X5074A-Z-N
Q-PREM-SPRT-SYS

1
3

6

1

1
1

Oracle
Oracle

Oracle

Oracle
Oracle

Oracle

Oracle Linux Basic Support for 3 years
Oracle Database 11g Enterprise Edition, Per Processor
Unlimited Users for 3 years
Partitioning, Per Processor
Unlimited Users for 3 years
Oracle Premium Support for 3 years
Oracle WebLogic Server Standard Edition Release 10.3.5
Per Processor for 3 years
Oracle Premium Support for 3 years

2
6*

6*

2

6*

1

(* 6 = 0.5 * 12) Explanation: For the purposes of counting the number
of processors which require licensing, a multicore chip with 'n' cores shall be determined by
multiplying 'n' cores by a factor of 0.5

O S G C L O U D W G

REPORT TO OSSC 16

3 Relevant Cloud Metrics

Metrics are used as the measurement criteria for the tests. The following metrics

have been identified as being the key indicators of performance for most workloads

in a Cloud environment. Note: Due to the breadth of cloud implementations, not all

metrics will be applicable to each benchmark. For instance, if End-Consumer tests

a public cloud, the density and power metrics are typically not measurable.

The key metrics identified are:

 Elasticity, which consists of at least the following components

 Provisioning Interval

 Agility

 Scaleup/Down

 Elastic speedup

 Throughput

 Response time

 Variability

Other relevant metrics include:

 Durability

 Reliability

 Power

 Price

 Density

The nature of the cloud makes these metrics, while relevant, difficult to measure in

the context of benchmarking. These metrics also do not represent quantifiable

engineering metrics.

3.1 Elasticity

Elasticity has become a key component and buzz word when talking about cloud

services. The term has become synonymous with how quickly a service can adapt

to the changing needs of the customer. Thus, a highly elastic system can scale to

include newer instances, as well as quickly provision those instances. Based on this,

we define two metrics to characterize the term Elasticity.

The exact definitions of the metrics captured under Elasticity will vary based on the

service model and SUT definition.

Provisioning Interval is defined as the time needed to bring up or drop a resource.

This is the time between initiating the request to bring up a new resource or to

relinquish it, and when the resource is either ready to serve the first request or

when it serves the first request. The state of the new instance will have to be

Provisioning

interval

O S G C L O U D W G

REPORT TO OSSC 17

defined and disclosed by individual benchmarks. For example, the state may

include all the necessary operating system and database server patches. Or state

complies with specialized workload requirements, as in the case of IaaS.

E X A M P L E S O F P R O V I S I O N I N G I N T E R V A L M E T R I C S B Y P L A T F O R M

IaaS
The measured time needed to bring up a new instance, or add more

resources (like cpu or storage) to existing instance.

PaaS

The measured time needed to bring up a new instance of an

application server (example: Microsoft Azure, or Java Enterprise),

or to bring up Hadoop datanode and tasktracker servers on the new

cluster nodes (which could be virtual machines).

SaaS

The measured time needed to bring new Application instances on-

line to meet increasing demand (moving from 10000 to 20000

concurrent users).

This metric characterizes the ability to scale the workload and the ability of a

system provisioned to be as close to the needs of the workload as possible.

One way to define this quantity would be as

Where

Cap_min(i) The difference between the minimum capacity needed to

meet the QOS at a given workload level for an interval i.

Cap_prov(i) The recorded capacity provisioned for interval i.

Excess(i) The excess capacity for interval i as determined by

Cap_prov(i) – Cap_min(i), when Cap_prov(i) > Cap_min(i)

and zero otherwise.

Shortage(i) The shortage capacity for interval I is determined by

Cap_min(i) – Cap_prov(i), when Cap_min(i) > Cap_prov(i)

and zero otherwise.

N The total number of data samples collected during the

measurement period

Agility maintained over a period can be defined as

For an ideal system, this number should be as close to zero as possible.

Agility

O S G C L O U D W G

REPORT TO OSSC 18

This is a measurement of the ability to scale up and down while maintaining a

specified QOS. The above definition will not be valid in a context where the QOS

is not met.

Scaleup/down is defined as measurements of the system’s ability to maintain a

consistent unit completion time when solving increasingly larger problems only by

adding a proportional amount of storage and computational resources—i.e., if we

double the resources, can we solve a problem twice as large? [(Toward a Standard

Benchmark for Computer Security Research, 2011)]

S C A L E U P / D O W N E X A M P L E :

1. Create an 8-node (1 master, 8 slaves) Hadoop cluster, and run Terasort .

Measure the Terasort completion time, T8.

2. Create a 16 node (1 master, 16 slaves) Hadoop cluster, and run Terasort.

Measure Terasort completion time, T16.

3. Compare T8 and T16 to determine how Hadoop scales for Terasort

workload.

Elastic Speedup indicates whether adding SUT resources as the workload is

running results in a corresponding decrease in the response time— i.e., if we

double the resources, we can solve the same problem twice as fast? We initiate a

known workload against a given number of servers. As the workload is running,

add one or more servers, and observe the impact on performance. A system that

offers good elasticity should show a performance improvement when the new

servers are added, with a short or non-existent period of disruption while the system

is reconfiguring itself to use the new server(s). (Benchmarking Cloud Serving

Systems with YCSB, 2010)

E L A S T I C S P E E D U P E X A M P L E :

The log files processing workload produces results by processing 100 log files per

second. The Company wants the information faster. So while the original 100

nodes are running, they add another 100 more servers to Hadoop cluster.

1. Create a 100-node hadoop workload, and store log files for one year to the

HDFS.

2. Start running a log files processing workload.

3. At the end of every hour, copy the new log files created during that hour to

the HDFS.

Now, the same log files processing workload is producing results for 200 log files

per second.

Scaleup/Down

Elastic Speedup

O S G C L O U D W G

REPORT TO OSSC 19

3.2 Response Time

The Response Time metric is the same as the traditional response time

measurements used by existing SPEC benchmarks. In the client-server context,

Response Time is the interval between when a request is made by a client or

workload generator and when the response is received by the client.

A benchmark may also have multiple definitions of Response Time, based on

specific scenarios inherent it is domain. For example, a variant response time

definition occurs where the client meters the time taken from when it sends a

request to when it receives a response. Web workloads are prime examples. The

SPECweb2005 benchmark defines one response time as the time taken to return the

entire page. On the other hand, it defines the response time for a large download as

the time to receive the first byte of the file. The time to receive the entire file is

usually measured by another metric, i.e. the throughput.

 In each contexts, one determines the response time‘s mean value, and various

percentiles.

In addition to the client-server response time measurement, White Box benchmarks

have the ability to rely on internally measure response times within a SUT as well

as on its external workload generators.

For example, a SOA benchmark tested within a white box environment has direct

control of the servers and hosts locations. If the SOA benchmark measures a

vendor's underlying SOA platform, then one critical aspect is a set of service

clusters located on "separate" machines, as well as on the same machine. Such a

benchmark defines service clusters on the SOA platform, and could measure its

own response time to a request (after some simulated work), as well as send out its

own request downstream to other SOA services.

Black Box benchmarks have no direct knowledge of their servers’ physical

network connectivity. Various geographic distances may separate the hosts, or all

may reside on the same physical hardware within the same data center. The tester

cannot not ensure that the subsequent test set retain the same geographic

relationships. The benchmark needs to address locality and configuration variation

issues.

3.3 Throughput

This metric is the same as the throughput in traditional systems. This refers to the

units of work processed by the system or cloud per unit time. The exact definition

of this metric depends on the workload, and should be defined in that context. We

present the following examples from multiple scenarios, to help guide these

definition needs.

White Box
Consideration

Black Box
Considerations

O S G C L O U D W G

REPORT TO OSSC 20

This is the number of tasks completed per minute when the Hadoop cluster is at

100 percent utilization processing multiple Hadoop jobs

Throughput is the amount of data

read from the device(s) on a single node or cluster expressed in kilobytes

per second.

or

written to the device(s) on a single node or cluster expressed in kilobytes

per second

E X A M P L E S O F N E T W O R K T H R O U G H P U T :

Total number of

 packets received per second

 packets transmitted per second

 bytes received per second

 bytes transmitted per second

SPEC benchmarks Throughput metrics measure the amount of work performed (in

benchmark defined units of tasks or operations) per unit of time over the

measurement period. A benchmark may include a ramp-up and/or a ramp-down

period prior to or after the measurement period. This methodology enables the

throughput measurement during a steady state, and/or synchronizes the

measurement of parallel operations.

E X A M P L E S O F S P E C T H R O U G H P U T M E T R I C S

Benchmark Metrics Description

SPEC CPU2006 SPECrate

SPECint_rate2006,

SPECfp_rate2006

Geometric mean of normalized throughput ratios.

SPECjEnterprise2010

EjOPS

Average number of successful jEnterprise

Operations Per Second completed during the

Measurement Interval.

SPECjbb2005 bops Arithmetic mean of Summed throughputs for all

the points from N warehouses to 2*N inclusive

warehouses

Throughput in the

context of Hadoop

workloads:

Throughput in the

context of

Devices:

Throughput in

SPEC metrics:

O S G C L O U D W G

REPORT TO OSSC 21

Benchmark Metrics Description

SPECjbb2005 bops/JVM Divide the SPECjbb2005 bops metric by the

number of JVM instances

“XXX

SPECsfs2008_nfs.v3 ops

per second with an overall

response time of YYY

ms”

XXX represents the throughput value obtained

from the right-most data point of the throughput

divided by benchmark’s generated response time

curve

YYY represents the overall response time values as

collected by the benchmark reporting tools.

3.4 Variability

Variability measures the repeatability of the test results. Many variables affect the

repeatability and should be factored into defining the values for this metric. Note

that variability also exists in each of the other metrics defined here. For instance,

variability exists in the collected and computed response times, throughput,

provisioning interval, and other metrics.

The variability metric for any parameter should be based on the standard deviation

of the measurement. Variability could be measured against any of the following

parameters: Variability with time or Variability with SUT location. The measured

parameter should be collected in a number of iterations and the standard deviation

or a metric related to standard deviation should be reported.

 White Box benchmark testers control both the SUT’s location and additional

processes running on the configuration.

 Black Box performance metrics are known to show temporal variability due to

either changes in actual configurations, or the presence of other background load

on the system/systems.

3.5 Durability

Durability is defined as the probability of data loss. Depending upon the context,

this entity could be a requirement on the system and not tested in the duration

period of a normal benchmark run. Note that each benchmark may specify a

different requirement for durability.

3.6 Reliability

Reliability is the ability of a system or component to perform its required functions

under stated conditions for a specified period of time. The reliability of a system is

usually measured by the probability of failures or by the mean time between

failures (MTBF).

White Box SUT

Black Box SUT

O S G C L O U D W G

REPORT TO OSSC 22

MTBF is calculated by dividing the total time measured by the total number of

failures observed. For example, if 15400 units of SCSI hard drives run for 1000

hours and 11 units fail, then

MTBF is a statistical measure. As such, it cannot predict
anything for a single unit. An MTBF of 1.4 million hours

doesn't imply that a specific SCCI hard drive will run for
1.4 million hours before failing, only that it is the

average of a 15400 sample set.

3.7 Availability

Availability is the degree to which a system or component is operational and

accessible when required for use. It is often expressed as a probability (or as a

fraction of time) the system is available to service user requests. Example: a

telephone system is 99.9999% (or 6-Nines) available.

The time during which the system is not available is called downtime; the time

during which the system is available is called uptime. A small uptime and a very

small downtime combination may result in a high availability measure – which

could be misleading. Therefore, the mean uptime is also often known as the Mean

Time Between Failures (MTBF), together with Mean Time To Repair (MTTR), and

considered as better indicators for availability. Where

In fault-tolerant systems, this is a combination of Mean Time Between Failures,

Mean Time To Repair.

The exact definition of Availability will be benchmark specific. This metric can be

measured, although it may become impractical to obtain accurate readings in the

case of highly reliable systems.

E X A M P L E S O F A V A I L A B I L I T Y R E Q U I R E M E N T S

Here are some examples of how availability requirements are defined in various

contexts/services.

 Classic telephone service examples

 US telephone service must continue for 80 hours after losing power.

During this period, any land line will be able to call another land line

telephone subscriber within at least the central office, if not the regional

service area.

Note

O S G C L O U D W G

REPORT TO OSSC 23

 US phones must complete a call connection within 10 millisecond or

else indicate a busy circuit

 Short message services will usually accept an uploaded SMS within 5

seconds, but do NOT guarantee delivery to recipients outside of their

service. Notification of delayed or non-delivery is not required, unlike

Internet e-mail messages.

 Most Internet Service Providers guarantee 99.9% availability to their paying

e-mail customers, but only 95 to 98% for their non-paying customers.

 Many e-commerce companies run a private "cloud" for their transaction

database, to ensure 0% data loss, and 100% transaction integrity.

 Automated teller machines confirm all account debit transactions are

complete and accurate before dispensing cash. Loss of access to central

servers deactivates affected ATMs.

 DARPA's original specification for the Internet required adaptive techniques

to detect and re-route established TCP/IP connections at the network layer

(the application layer is a separate matter). This does not apply to the

underlying UDP layer. Telephone companies switched to private TCP/IP

networks because network equipment makers had better detection and

recovery algorithms, once they switched to a digital encoding (aka

Ethernet).

3.8 Power

The Power measurement is defined as the total watts used by the SUT during the

tests. Guidelines for power measurement are provided in the SPECPower

methodology document.

Note that the power metric is another of the metrics that is not applicable or

measurable in all cases.

A Hardware/Software Vendor or Cloud Vendor has direct access to the SUT, and

can gather power measurements as defined by individual benchmarks.

Power measurements may not be possible since the tester does not know the

individual “computers” actually correspond to a stand-alone machine or a subset of

a larger host. The Cloud-Provider also may not provide access to power meter

measurements, or if one is attached at all.

3.9 Price

We note that while price is an important metric in the context of cloud, this is

somewhat temporal, and is clearly a non-engineering metric that may vary from

customer to customer. The recommended way to incorporate this aspect is to

include the Bill of Materials details as part of a benchmark disclosure. This list of

model numbers, quantities, software and support information may be used by the

benchmark consumer to construct the end price relevant to them. Inclusion of the

exact price details in the benchmark disclosure is not recommended.

White Box SUT

Black Box SUT

O S G C L O U D W G

REPORT TO OSSC 24

3.10 Density

Density measures how many instances of the workload can be run on the SUT

before performance degrades below a specified QOS.

IaaS Density may refer to the number of virtual machines running on a

physical hardware.

PaaS Density may refer to the number of application servers running on a

system.

SaaS Density may refer to the number of users that the system can service.

The Density metric is applicable because the tester directly controls how the

underlying host management system assigns each server to a physical host.

The Density metric is not applicable because the tester does not know if the

individual “computers” actually correspond to a stand-alone machine or a subset of

a larger host.

4 What Makes a Benchmark a Cloud Benchmark?

A Cloud benchmark will quantify the performance and scalability of cloud

computing services. The benchmark's workloads represent the typical set of

applications most likely to run in a cloud environment: business infrastructure (i.e.

mail, OLTP, automated testing), data analytics, and select "software services" such

as database, files.

 A cloud benchmark utilizes both existing standards (SPEC and non-SPEC),

as well as adapting others to run within a cloud environment.

 A cloud benchmark's primary and subordinate metrics reflect important

considerations such as agility/elasticity, durability, response time,

throughput, reliability, density and variability. Other metrics will be

documented and included as considerations necessary for comparison, but

impractical or too variable to measure. These might include provisioning

interval, durability, reliability, power, and price.

 The SUT may run under virtualization conditions or not. It is not considered

a requirement. However, the benchmark's description section attempts to

standardize the computational capacity available to cloud customers, and

facilitate performance comparisons under known conditions.

 Workload generation is benchmark specific, but should be done on a

separate set of hardware capable of measuring time reliably and accurately.

 Communication between workload generator and SUT for all the client-

server type benchmarks must use TCP/IP or UDP protocol for

communication.

White Box SUT

Black Box SUT

O S G C L O U D W G

REPORT TO OSSC 25

 Measurement states correspond to both distinct workloads (simplistic

transaction streams) and major subsections identified by the subcommittee

as relevant.

 Benchmark scale may be subsumed as part of the workload factors.

In addition to the usual FDR, a cloud benchmark should include the following

components:

 Metrics that include Elasticity. The benchmark should be geared to measure

elasticity and agility.

 Benchmark must be capable of running at variable load levels and start and

stop on various physical as well as virtual systems.

 Support for Virtualization.

4.1 Cloudizing an Existing Benchmark

As pointed in Section Cloud Benchmark Audience Types1.2.2, a cloud benchmark

may be used in the context of

1. Hardware/Software Vendor to Cloud-provider relationship or

2. Cloud-provider to End-Consumer relationship.

Most publicly available benchmarks run to meet the second category.

Given that any workload that runs on a stand-alone system can also run in the

cloud, most SPEC workloads are potential candidates to be cloudized or “modified

to understand a cloud environment.” In this section, we present general guidelines

for this step.

SPEC benchmark workloads fall into two types:

Throughput Designed to run at different rates with scaling.

Batch jobs Designed to record completion time.

Most workloads that run on regular computer systems can also run on the cloud.

Given this, the existing benchmarks that address various workload areas may intend

to “cloudize” their workloads. The following requirements are to be put in place in

order to make sure that the resultant benchmark is cloud-specific.

SPEC benchmarks do not account for SUTs physically located in other sites. The

benchmark should run from client systems, physically separated from the SUT,

accessing the SUT via a campus or wide area network. The client systems should

be reliable, so the benchmark can make time related measurements. (reference to

Run Rules of various benchmarks)

The SUT defined for the workload must be accessible via network connections.

Characterize

Workload Types

Separate

Locations

O S G C L O U D W G

REPORT TO OSSC 26

Where relevant, the benchmark should consider adding cloud-relevant metrics

including Elasticity and Agility.

Most cloud computing instances allow multiple applications to share computing

resources on a single computer. This means the tester may or may not control all

applications sharing the SUT during a benchmark run.

A Hardware/Software Vendor or Cloud Vendor knows and controls what other

applications run on the SUT.

The End-Consumer does not know or Cloud Vendor chooses to randomly select

machines from the computing cloud. The tester does not know the full application

set sharing the SUT. The benchmark should measure temporal variability in its

metrics. This can be done by running the benchmark at different times of the day to

different times that may be appropriate to measure and characterize the variability

in performance.

The benchmark harness should provide a dynamic load. In the case of batch jobs,

this could mean the ability to add, and configure or delete instances of the test

systems. In the case of throughput oriented workloads, this could refer to an ability

to vary the size of the workload as well as start and stop new instances.

4.2 Cloudize Existing SPEC Benchmarks

The Working Group asked each subcommittee chairperson some questions about

existing workloads and methodology. The following assessments and suggestions

are based on their responses or a review of sample disclosures.

In the table below, we provide some guidelines on the existing SPEC benchmarks,

whose workloads are likely candidates to be extended into the cloud space.

F
a
ct

o
rs

&
 A

ct
io

n
s

W
o
rk

lo
a
d

 T
y
p

e

S
ca

la
b

le
 H

a
rn

es
s?

S
ca

la
b

le
 W

o
rk

lo
a
d

?

In
tr

o
d

u
ce

 S
ca

li
n

g
?

D
ef

in
e

a
 C

lo
u

d
 S

U
T

?

C
lo

u
d

iz
e

B
en

ch
m

a
rk

M
et

ri
c

A
d

d
 M

et
ri

c:
 E

la
st

ic
it

y

A
d

d
 M

et
ri

c:
 V

a
ri

a
b

il
it

y

A
d

d
 M

et
ri

c:

P
ro

v
is

io
n

in
g
 I

n
te

rv
a
l

CPU B N/A N/A N

Add Cloud-specific

Metrics

White Box

Black Box

Include Scalable

Workloads

Guidelines for
SPEC Benchmarks

O S G C L O U D W G

REPORT TO OSSC 27

JBB 2005 T        

JBB 2012 T       

JEnterprise T       

File Server T      

Mail 2001 T      

Mail 2009 T     

Power ?

SIP T

SOA ?

Web T       

Virtualization T   

These are the currently known high-level modifications to each benchmark:

OSG

Benchmark Additional Notes

Web Eliminate manual setup steps

Mail Reactivate harness scaling code in Mail2009 harness

CPU

 Benchmark needs to run only on a single system

 Use a subset of CPU workloads to compare the actual

machine provided in cloud contexts vs. native lab

systems.

Virt TBD

JBB2005 TBD

JEnterprise

 Modify Application servers to suit purpose of

elasticity

 Make harness automatic

Power N/A

SIP
 Make harness and workload generators scalable

 Include Cloud metrics

4.3 Dos and Don’ts of Benchmarking a Cloud

Here is a list of Do’s and Don’ts to note while creating a cloud benchmark.

Benchmark
Changes

O S G C L O U D W G

REPORT TO OSSC 28

 Consider the variation in performance due to the background load on the

SUT.

 Treat virtualization as a technology behind the cloud and transparent to any

cloud benchmark. But virtualization should not be a requirement.

 Vary the intensity of the workload over time, and both up and down in

different cycles) to measure the elasticity.

 Report any metric that requires pricing. Instead provide all necessary

metrics for the consumer to compute the total cost (same as other

benchmarks?)

 Report a metric that is not observable to the consumer. (Same as other

benchmarks?)

 Include any time spent outside the boundary of the SUT (for example in the

Internet) for any latency type metrics. (Same as other benchmarks).

However when testing a Black Box, this will be impossible since the SUT

in the cloud is external to the tester’s benchmark harness and workload

generators. Assume the tester has no visibility into the cloud’s physical

infrastructure.

5 Tools to Measure Cloud Metrics

The OSGCloud team investigated various tools and frameworks that purportedly

tested and measured cloud computing. The following are only some of the tools

found in open source or restricted release forms. The team also hopes to have

canned demonstrations available for viewing.

5.1 AEOLUS (Red Hat)

Aeolus is an Open source project sponsored by Red Hat, designed as framework to

create and manage an on-premise hybrid cloud Infrastructure-as-a-Service (IaaS).

It provides self-service computing resources to users in a managed, governed, and

secure way. You can deploy and manage applications on any type of server -

physical, virtual, and public cloud.

Aeolus is focused on two distinct sets of capabilities related to IaaS:

1. Provide the tools to build and manage hybrid clouds
2. Provide the tools and processes to build, manage and launch applications

that run on hybrid clouds

It integrates with existing products and technologies, including physical servers and

virtualization platforms from other vendors, to provide the easiest on-ramp to an

Do’s

Don’ts

O S G C L O U D W G

REPORT TO OSSC 29

on-premise cloud. Using Aeolus, you can migrate to multiple public cloud

providers, including those running a software stack from a different vendor.

Aeolus delivers automated resource management, automated workflow and policies

to manage a diverse set of business applications in hybrid cloud environments. It

also allows organizations to leverage public clouds for pay-as-you-go utility

computing without creating another silo or losing control of IT security or

governance.

You can manage applications and infrastructure together as one unit, rather than as

separate silos, simplifying the task of ensuring continuous compliance. Thus, all the

infrastructure and applications will stay in sync with established policies at all

times.

http://aeolusproject.org

5.2 BITT (Intel)

Intel® Benchmark Install and Test Tool (Intel® BITT) provides tools to install,

configure, run, and analyze benchmark programs on small test clusters. It is

implemented in python and uses gnuplot to generate performance plots. Intel®

BITT currently runs on Linux and been used on OracleVM, Amazon and various

hardware platforms.

These are the major tools found in Intel® BITT:

Intel® BITT

Component Function/Role

installCli installs tar files on a cluster

monCli monitor performance of the cluster nodes and provides

options to start monitoring, stop monitoring and generate

cpu, disk i/o, memory and network performance plots for

the nodes and cluster.

hadoopCli automates the set up and control of the Hadoop test

environment

Command scripts enable configurable scripts to control monitoring actions.

XML files Sets benchmark configuration properties, including location

of installation, monitoring directories, monitoring sampling

duration, the list of the cluster nodes, and the list of the tar

files that need to be installed.

Templates Allows configurable plot generation

AEOLUS Website

http://aeolusproject.org/

O S G C L O U D W G

REPORT TO OSSC 30

http://software.intel.com/en-us/articles/intel-benchmark-install-and-test-tool-intel-

bitt-tools/

5.3 CloudBench (IBM)

IBM’s CloudBench (CB) is a meta-benchmark framework designed for

Infrastructure-as-a-Service (IaaS) clouds. It automates the execution, provisioning,

data collection, management and other steps within an arbitrary number and types

of individual benchmarks. CB will do the following:

 Exercise the provisioned VM’s by submitting requests to applications

(individual benchmarks) that run on the provisioned VMs.

 Exercise the operational infrastructure by submitting VM provision/de-

provision requests to the Cloud management platform.

 Supports Black Box testing, with some support to embed data collection

nodes inside the SUT to collect metrics usually associated with White Box

tests.

 Manages multiple application sets. The default workload generates various

types of workloads, but can be extended to support local custom application

sets.

 Measures elasticity components: provisioning time, scaleup, as well as

variability, agility

Currently, not publically available. However once benchmarking activity begins, it

can be released or licensed. Please see Appendix C for a detailed description of the

tool.

BITT Website

CloudBench

Website

http://software.intel.com/en-us/articles/intel-benchmark-install-and-test-tool-intel-bitt-tools/
http://software.intel.com/en-us/articles/intel-benchmark-install-and-test-tool-intel-bitt-tools/

O S G C L O U D W G

REPORT TO OSSC 31

6 OSG Cloud Subcommittee

An OSG Cloud subcommittee should be formed to both release Cloud Computing

benchmarks, and work with other SPEC subcommittees when they are ready to

update their benchmarks into Cloud Computing environments.

6.1 Cloud Subcommittee Charter

We propose starting a subcommittee with the following charter:

 Establish a common definition and methodology to measure cloud

performance

 Some of this exists in the work done by the working group, but we can

continue refining this

 Framework for the Cloud Benchmark

 White box

 Black box

 Develop benchmarks using representative cloud workloads not covered by

other OSG groups.

 Work with other SPEC sub-committees to add cloud metrics to their

benchmarks.

6.2 Subcommittee specific Issues

We have identified the following topics the Cloud subcommittee needs to address.

 Provide an API layer for benchmarks to make a single consistent call to

Cloud-Providers.

 How to spin up and down? Not coordinating may lead to harmonic

oscillations.

 Are there simpler things we could do?

 May want to start a new instance, but not load it.

 Which of the characteristics can be addressed with the current benchmarks

during the next iteration period of the benchmark?

O S G C L O U D W G

REPORT TO OSSC 32

Appendix A. OSG Cloud Contributors

The following people in OSGcloud working group actively contributed to this

report.

 Dean Chandler and Nurcan Coskun (Intel)

 Salman Baset and Erich Nahum (IBM)

 Steve Realmuto, Masud Khandker, and Tom Daly (Oracle)

 Nicholas Wakou, Indrani Paul, and Louis Barton (Dell)

 Mark Wagner (Red Hat)

 Rema Hariharan (AMD)

 KIT

 Yun-seng Chao (Supporting Contributor)

O S G C L O U D W G

REPORT TO OSSC 33

Appendix B. Cloud Computing Use Cases

This section elaborates on the Computing Use Cases in Section 1.3.1.

A typical configuration probably has the following components and behavior:

 Recommendation engine

 Advertisement servers

 Search engine(s)

 Chat servers

 Conferencing servers

 Ratings engines and data sets

 Large quantities of data reads and writes of small or moderate size

 One or more Memory Cloud(s)

 Access to one or more Digital Rights Management services

 User Management and Verification

 Payment servers (Credit cards, electronic transfers)

A typical configuration probably has the following components and behavior:

 Search engine(s)

 Chat servers

 Conferencing servers

 Large quantities of data reads and writes of small or moderate size

 One or more Memory Cloud(s)

 User Management and Verification

Publicly accessible collaboration services might also use

 Recommendation engine

 Advertisement servers

 Ratings engines and data sets

 Payment servers (Credit cards, electronic transfers)

A typical commercial configuration probably has the following components

and behavior:

 Run e-mail servers (Exchange, sendmail, open source mail servers)

 Anti-abuse/mal-ware processing engines (filters SMTP, SMS, IM, etc)

Social Networking

Collaboration

Mail / Messaging

O S G C L O U D W G

REPORT TO OSSC 34

 IMAP4 servers (long-lived connections, some compute intensive

commands)

 Large quantities of data reads and writes of varying sizes

 User Management and Verification

More sophisticated or free services might also use

 Coordination with calendar servers

 Advertisement servers

 Search engine(s)

This wide category of computing include

 Expertise Searches for enhanced search results, and generated by

 Editors and authors who generate useful meta-data

 Users who generate click-streams and other data

 Artificial Intelligence

 The Ranking problem

 Supervised machine learning

 Iteratively retrieve and rank documents or information quanta

 Incorporate all available cues: text similarity, classifications,

citations, user behavior and query logs

 Process large data sets (Big Data, user profiling, pattern processing)

 Extract from logs, transform and load processes

 Cluster similar queries together

 Extract, normalize, collate citation contexts

 Needle in the hay stack searches (SETI)

 Clustering

 Process N-dimensional data sets to find natural partition clusters, similar

items within and between clusters

 Find customer segmentation boundaries or company strategies

 Find groups with similar behavior

 Find customers with unusual behavior

 Search large database of CAD drawings, groups of similar parts,

identify standard parts with each group, and use these standard parts

instead of custom parts

This computing category builds on large sets of both structured and

unstructured data.

 Data collection

 Data preparation (data factory) – ETL (extract, transform, load) reports

Data Analytics

Data Warehousing

/ Mining

O S G C L O U D W G

REPORT TO OSSC 35

 Business intelligence analysis

 Ad-hoc queries

These non-relational databases can support peta-byte scale data sets, distributed

across hundreds to thousands of machines. They are used where ‘weak

consistency guarantee’ policies suffice. Real-time web applications, document

databases, graph databases, key-value data stores are among some current

applications of this technology.

This long-standing processing type is characterized by high data I/O volumes

and well defined data sets. Both real-time and scheduled processing exist.

A group of machines maintain a coherent and shared data space used by

 Web search databases and queries

 Graphs of social network connections

 Virtualized Java VMs – multiple Java applications share the same

memory space

 Web productivity suites

 Leverages NoSQL or key-value pair databases

High Performance Computing

 Monte-Carlo simulations

 Biological Molecule simulations

 DNA sequence analysis

 Computational fluid dynamics

 Weather and climate simulation

 Fraud detection

Similar to social networking or collaboration, but also maintain time-sensitive

services

 Game servers

 Session servers

 Game databases

 Player databases of relationships, roles, characters

 User Management and Verification

 Advertisement servers

NoSQL Databases

Business OLTP

Memory Cloud

HPC

On-line Gaming

O S G C L O U D W G

REPORT TO OSSC 36

 Recommendation engine

 Payment servers (Credit cards, electronic transfers)

 Large quantities of data reads and writes of varying sizes

An increasing number of consumers access music, books, or videos from

various media distribution companies.

 Recommendation engine

 User Management and Verification

 Media retrieval

 Media format conversions

 Advertisement servers

 Payment servers (Credit cards, electronic transfers)

 Access to one or more Digital Rights Management services

 Large quantities of data reads in fixed sized blocks

 Less quantities (but still numerous) uploads and data writes in fixed

sized blocks

 Time-sensitive I/O to users

Replacing and expanding audio communications.

 Network connections limit determines host count, not cpu, for audio

conversations or conferences.

 CPU and network connection limits determine host count for video

conference or personal calls.

 Media format conversion servers

 User Management and Verification

 Bi-directional audio streams of varying sizes

 Time sensitive I/O to and from users

 Payment servers (Credit cards, electronic transfers)

 Usually accompanied by Instant Messaging / Chat

Streaming

Audio/Video

Voice over IP

O S G C L O U D W G

REPORT TO OSSC 37

Appendix C. CloudBench Description

Introduction

CloudBench (CB) is framework that allows automated execution of meta-
benchmarks on multiple “Infrastructure as a Service” (IaaS) Clouds. In the
context of CB, a meta-benchmark is a composition of an arbitrary number
and types of individual benchmarks, arranged with the purpose of
exercising both the Cloud’s provisioned VMs and Cloud’s operational
infrastructure. Regarding the first Cloud characteristic, the exercising is
achieved by the submission of requests to applications (individual
benchmarks) that runs on the provisioned VMs. For the second, it is
achieved by the submitting of VM provision/de-provision requests to the
Cloud management platform (which will in turn direct it to an hypervisor).
While the data collection on the performance of benchmarks running on
individual VMs on a Cloud is an intrinsic characteristics of any IaaS Cloud
(i.e., a “black box” view of Cloud performance is the standard view for
public Clouds), collection on some of the specific characteristics of
resource usage by a group of VMs on an hypervisor (i.e., a “white box”
view) requires special provisions from the Cloud, to allow direct access to
the hypervisors. While CB can certainly collect and process both black-box
and white-box data, the second type is usually only made available on
private Clouds. Still is important to note that even though unable to collect
detailed hypervisor resource usage information from public Clouds (e.g.,
Amazon EC2, Rackspace Cloud Servers), CB can and will collect
information pertaining the time to provision a new VM, even in a public
Cloud.

The “application performance” capabilities of a Cloud are assessed by
determining what is the maximum combined performance achieved by the
benchmark set being executed on Virtual Machines (VMs) provisioned on a
Cloud This particular set of metrics is of interest primarily for Cloud users
or “consumers”. These could, by designing an experiment to match the
characteristics of both their own set of internal applications and its access
patterns (i.e., application load levels and load variation), have a projection
on how adequate, performance-wise or even better price-performance-
wise, a particular Cloud would be. This manner, before deciding to move its
internal applications to a Cloud, a consumer can assess multiple Cloud
providers in a manner that is not only objective and consistent, but also
fully automated.

O S G C L O U D W G

REPORT TO OSSC 38

The “operational performance”2 capabilities are relevant first and
foremost for Cloud providers. In addition to a particular set of selected
benchmarks, a meta-benchmark execution can also include a description of
one or more patterns for the arrival and departure of VMs. This manner,
the natural flow of new consumers being added to the Cloud (through VM
provisioning), and old consumers leaving it (through VM de-provisioning)
can be replicated. By combining this continuous motion with the constant
benchmark execution on individual VMs, a provider can assess the
capabilities of its own infrastructure to quickly incorporate new users
while in the face of constant (and eventually, heavy) computing resource
use by old users.

From the users perspective, CloudBench can be seen as an “execution
engine” for the meta-benchmark scenarios composed by them. The
scenarios are assembled by the employment of several abstractions built
by CB for this purpose. The first relevant abstraction is designated
“Application Instance” (AI). An AI is a set of VMs, logically grouped
together in order to execute a specific benchmark. For instance, the
“DayTrader” application benchmark, built to simulate a complete online
stock trading system (users can login, view their portfolio, lookup stock
quotes, and buy or sell stock) is composed by at least three VMs: one
executing an automated “load driver” (to simulate users actions), one
executing the application server for user action processing (e.g.,
WebSphere Application Server) and finally one VM executing a database
server for results persistency (e.g., DB2). Another relevant example of an
AI is the Hadoop application. It is composed by one “master” VM running
control processes (e.g., JobTracker, NameNode) and one or more “slave”
VMs, running information operation processes (e.g., DataNode,
TaskTracker). It is important to note that the concept of an AI is internal to
CB. While a Cloud management platform is required to keep track of the
state of individual VMs that it provisions, typically there is no information
on the dependence and/or association among these. In addition to the
actual composition of an AI, CB allows the experimenter to specify a
description of the variation of the “load intensity” level to be applied to an
AI, in the form of random distributions. It is important to note that actual
meaning of the “load intensity” level is entirely AI-specific. For instance,
while “level” might refer to the number of simultaneous clients in case of a
DayTrader AI, it might refer to the size of the dataset to be “mapped and
reduced” in case of a Hadoop AI.

2 From CB’s standpoint, “operations” are VM provisioning/de-provisioning, VM “image capture” and VM
migration (the latter two are not yet fully included on the CB).

O S G C L O U D W G

REPORT TO OSSC 39

Figure 1 – Application performance assessment experiment description

The AI is the primary abstraction used to describe scenarios where the
application performance capabilities of a Cloud are assessed. A scenario is
composed by a collection of AI groups (called simply “scenario” in the CB
nomenclature). By adding an execution “time table” for such scenario, a
meta-benchmark run is defined. The Figure 1 illustrates it with an
example.

 A scenario is composed by the specification of multiple AI groups, each
with its own load variation characteristics. The variation is expressed by
two random distributions, one used by CB for the determination of a
specific load intensisty level, and another used for the determination of the
duration of a given intensity level. The random distribution is specified by
five parameters: distribution type (e.g., normal, exponential, gamma,
uniform, etc.), average, standard deviation, maximum and minimum
values. For each individual AI in a group, CB applies a different “load
intensity” level lasting for a specific “load duration” time. At the end the
“load duration” time, new values for both load intensity and load variation
are selected from the random distributions. Every individual AI within a
group has individual load values selected for it. AIs on a group share the
same random distributions, but not the same values. As can be seem in the
example, an experimenter can even specify different AI groups with the
same benchmark types, but with different load variation parameters.

O S G C L O U D W G

REPORT TO OSSC 40

The second relevant abstraction introduced by CloudBench is the
“Application Submitter” (AS). An AS is a process that continuously creates
and destroys AIs on a Cloud, simulating the behavior of cloud consumers
arriving and leaving. To this end, the AS create new AIs at specific
intervals, and assigns a lifetime to each individual AI, periodically
destroying those that are being executed for a time longer than its
expiration. This abstraction is of primary interest for Cloud providers, as it
allows the specification of scenarios with multiple Application Submitters
are used to produce consumer population fluctuation while keeping the
Cloud resource usage at a desired level. The Figure 2 illustrates a complete
experiment for the assessment of the management (provision/de-
provision) capabilities of a Cloud.

Figure 2– Runtime performance assessment experiment description

In this case, a scenario is composed by the specification of multiple AS
groups, each with its own arrival rate, lifetime and load variation
characteristics. Exactly as it is the case for the AIs, the all characteristics
here are expressed by random distributions. In the case of arrival rate, a
new value is selected from the random distribution after every individual
AI creation. Each individual AI within an AS also is assigned its own
individual lifetime value. Finally, the load variation characteristics are also

O S G C L O U D W G

REPORT TO OSSC 41

selected from the appropriate random distributions and applied to
individual AIs within an AS. AIs generated by an AS share random
distributions, but not particular values for any of its parameters. For
illustrative purposes, the values of maximum and minimum for each
distribution were omitted in the description of the second experiment, but
they are exactly the same (i.e., average, standard deviation, maximum and
minimum) enumerated during the description of runtime performance
assessment experiments.

It is important to note that the use of random distributions, while highly
desirable due to its capability of capturing the behavior of real Clouds
through modeling, does not give any predictability in terms of
monotonicity on the specified characteristics of an AI or an AS. For
instance, using a random distribution for load intensity level provides no
guarantees that a particular AI will experience constantly growing
intensity. In case predictable growth or shrinkage of load is more
important than random variation, any AI or AS characteristic can be also
specified as a arithmetic or geometric progression, assuring monotonic
variation on such characteristic.

Once designed, a scenario has to be translated to CloudBench’s meta-
benchmark language description. This language is based on two primitive
directives – “attach” and “detach” – that represents the activation or de-
activation of actual objects (e.g., VMs, through the “vmattach” and
“vmdetach” directives) or CB abstractions (e.g., “aiattach”, “asdetach”)
during the meta-benchmark’s lifecycle. This language is processed by a
frontend, which runs a Command Line Interface (CLI) that allow CB users
to interactively follows the progress of a meta-benchmark. An execution
trace is normally stored on text file containing a sequence of directives.
The use of text files allows quick re-execution if necessary, even in an
automated fashion. Illustrative examples for the experiments displayed on
Figure 1 and Figure 2 follows:

Experiment 1

cldattach ec2 AMAZ /*attaches a new Cloud called “AMAZ” using the EC2 API*/

vmcattach AMAZ us-east-1 /* All VMs will be created on EC2’s “us-east-1”

aiattach AMAZ daytrader normal,50,10,95,5 uniform,X,X,20min,10min

/* this command is repeated 18 times, since we want do define the instances
individually */

aiattach AMAZ daytrader exponential,10,X,30,10 gamma,1h,0.8h,3h,0.5h

/* repeat 23 times */

aiattach AMAZ hadoop uniform,X,X,30,20 normal,40min,10min,80min,5min

/* repeat 10 times */

aiattach AMAZ coremark gamma,50000,100,80000,1000 uniform,X,X,8min,5min

/* repeat 5 times */

O S G C L O U D W G

REPORT TO OSSC 42

waitfor 4h /* the experiment start at 08:00AM*/

ailist AMAZ

statealter AMAZ ai_all “suspend” /* stop load execution on all AIs */

waitfor 9h /* the next execution is 9:00 PM*/

statealter AMAZ ai_all “active” /* resume load execution on all AIs */

wait for 5h

statealter AMAZ ai_all “suspend” /* stop load execution on all AIs */

waitfor for 1h /* the next execution is 3:00 AM*/

statealter AMAZ ai_all “active” /* resume load execution on all AIs */

waitfor 7h

aidetach AMAZ all

vmcdetach all

clddetach all /* ends the meta-benchmark, cleans up any state*/

Experiment 2

cldattach ec2 AMAZ

vmcattach AMAZ us-east-1

asattach AMAZ daytrader gamma,10h,0.5,12h,2h normal,20h,1h,36h,4h
exponential,20,X,40,10 uniform X,X,15min,10min

asattach AMAZ daytrader uniform,X,X,4d,2d gamma,25d,1d,40d,5d
exponential,5,X,10,1 normal,2h,2h,10h,1h

asattach AMAZ netperf uniform X,X,10min,10min normal,3h,25min,6h,10min
gamma,32768,4096,10000,1000 gamma,5min,1min,10min,1min

waitfor 12h /* the experiment start at 08:00AM*/

asdetach AMAZ all

waitfor 20h /* the next execution is 9:00 PM*/

asattach AMAZ daytrader gamma,10h,0.5,12h,2h normal,20h,1h,36h,4h
exponential,20,X,40,10 uniform X,X,15min,10min

asattach AMAZ daytrader uniform,X,X,4d,2d gamma,25d,1d,40d,5d
exponential,5,X,10,1 normal,2h,2h,10h,1h

asattach AMAZ netperf uniform X,X,10min,10min normal,3h,25min,6h,10min
gamma,32768,4096,10000,1000 gamma,5min,1min,10min,1min

waitfor 6h

aasdetach AMAZ all

vmcdetach all

clddetach all /* ends the meta-benchmark, cleans up any state*/

The set of produced meta-benchmark directives is then translated to
Cloud-specific commands (to have the appropriate VMs to be provisioned)
and individual benchmark-specific commands (e.g., start a database on a
given VM), being then submitted to a Cloud. The main purpose of the CB is
to automate the meta-benchmark execution, including the metrics
collection, allowing even for simultaneous execution on multiple Clouds.
One important aspect to be clarified is regarding the expansion on the
scale of individual AIs. CB can certainly increase load on an individual AI
(all it is needed is the change on the load variation characteristics on this
AI, for instance, increasing the average of the random distribution) or
increase the total load on a Cloud by increasing the number of AIs. It does

O S G C L O U D W G

REPORT TO OSSC 43

not have the ability, however, to increase the number of VMs (i.e., the
“size”) of an individual AI. The “scale-out” of an AI is an operation that is
very application-benchmark specific, and therefore has no directly mapped
uniform directive on CloudBench. For instance, while “scale-out” is an
almost trivial operation for a Hadoop-type AI (all that is needed is the
increase in the number of “slave VMs”) it would require significant
configuration changes for a DayTrader-type AI (e.g., clustering, load-
balance configuration changes). The Figure 3 displays the usual execution
flow for CB.

Figure 3 – CloudBench’s meta-benchmark execution flow.

While the Cloud maintains the state of provisioned VMs, the state of each
AI and AS has to be maintained by CB itself. To this end, CloudBench
manages its own Object Store (OS), which contains all the relevant
information pertaining an experiment’s execution lifecycle. Information
about each created AS and AI, the AI’s lifetimes, the random distributions
associated to each AI and AS, the list of VMs that needs to be provisioned
by a new AI of a given type, are all registered on the OS. Being an entity
completely separated from the CloudBench frontend CLI, the OS allows
asynchronous changes to an experiment to be submitted from multiple
sources (i.e., multiple CLIs can connect to the same OS), to dynamically and
adaptively change an experiment during its execution. The OS is

Cloud

User

1

Meta-

benchmark

CloudBench

Host

Amazon EC2

RackSpace

CloudServers

(OpenStack)

 IBM SmartCloud

 Enterprise

Meta-

benchmark

Meta-

benchmark

Meta-

benchmark

CloudBench

HostCloud

User

N

Cloud

Admin

Meta-

benchmark
CloudBench

Host

Cloud

management

platform

Meta-benchmark Designed

CloudBench CLI

Cloud-Specific Operations

Performance/Status Monitor

O S G C L O U D W G

REPORT TO OSSC 44

implemented as an in-memory key-value store (in the current
implementation, Redis is used, but other stores, as Memcached or
Voldemort would be equally suitable). This particular form of
implementation for the OS was selected by its scalability (key-value stores
can be easily and quickly horizontally scaled), its high write performance
(10s of thousands of inserts per seconds even on desktop computers) and
its ease to initial setup. It is important to note that the use of an in-memory
store is possible mostly because there is no need for persistency on this
data. While the state of each AI and AS is important during the
experiment’s execution, it does not need to be kept after it finishes.

Given the fact that CB is also in charge of performance data collection, a
second data store, designated Metric Store (MS) is also managed in the
same way of the OS. The details of the performance metrics collection will
be made explicit on the next section, but for now suffices to say that the
requirements for it, specially in terms of write performance are even more
stringent than the ones required by the OS. For this reason, the MS is also
implemented as an in-memory key-value store. Contrary to the OS
however, the MS do needs persistence of the information stored there,
since such information is the main outcome of an experiment executed by
CloudBench. This requirement is fulfilled by the existence of one or more
“performance reporters”, processes that reads data from the MS and writes
it to individual comma separated values (csv) files for latter analysis and
processing. This manner, the performance data can be submitted to MS is a
manner that is both scalable and flexible, while this same data can be
stored asynchronously.

As can be seen in the Figure 4, CloudBench’s architecture is inherently
distributed. The creation of a new AI triggers the spawning of a short-lived
“application instance creator” process on the CloudBench host (the same
machine that executes the frontend CLI), which will be in charge of the VM
creation and automatic application startup. After that, however, each AI
has a VM selected as a “driver”, which will act as a manager to this AI,
selecting load intensity levels and load duration through the “Load
Manager” (LM) process and collecting performance data through the
“Performance Collector” process. Both processes will run on the “driver”
VM throughout the AI’s entire lifecycle. In addition to that, each AS has a
long running “application submitter daemon” associated to it. This daemon
is kept running on the CloudBench host, continuously creating new AIs at
selected intervals (the inter-AI arrival time) and destroying “expired” ones.

O S G C L O U D W G

REPORT TO OSSC 45

Figure 4 – CloudBench’s multi-process architecture description.

How does CloudBench collect performance data?

The two different aspects of Cloud performance explored by CloudBench
have very distinct collection mechanisms. For the operational
performance, the relevant performance data pieces are simply the time
intervals between two successive events. During the provisioning of a new
VM, CB will record the time between the VM creation request and the
actual VM start, the time between the VM start and VM establishment of
the VM’s network connectivity and finally the time to start an individual
component application on a VM (e.g., time to start a database or web
server on a given VM). All these metrics, being fixed during the VM’s
lifecycle (they happen only once) are in fact stored by CB on the Object
Store, instead of the Metric Store. Nevertheless, they are also read by the
same performance reporter previously described and also stored on a
(separate) csv file.

The performance metrics collection for the application performance is
somewhat more elaborated. As previously explained, each individual AI
has a VM elected as its “driver” (co-located on the Cloud with the other
VMs on an AI). This VM will run a “Performance Collector” process, which
will receive performance data from all VMs belonging to this same AI. This
data is then processed (only the data format is changed) and is written,

Cloudbench Host

Application

Instance

Submiter

Performance

Reporter
CloudBench

Comand

Processor

Object Store

Server

Object Store

Log Store

Server

Log Store

Metric Store

Server

Metric

Store

Cloud Infrastructure

VMC 3

VMC 5

VMC 4

LOST

Application

Instance

VMC 2

VMC 1

DayTrader

Application

Instance

VM LD

(iwlengine)

VM WAS

VM DB2

VM LD

(jmeter)

VM

Apache

VM

MySQL

Cloud
management
platform

Application

Instance Creator

(Transient)

Cloud-specifc

Provisioning

Request/Responses

Load Manager

Performance

Collector

Performance data

from VMs on

the AI

(and VMCs,

if possible)

through Ganglia

Load

to the AI

O S G C L O U D W G

REPORT TO OSSC 46

without any summarization, on the MS. Asynchronously, the performance
reporter reads the data from it and writes it to a csv file.

Figure 5 – Runtime performance data collection flow.

The runtime metrics collection requires two components: collectors and a
transport framework. Although these components are theoretically
orthogonal, in practice there is great synergy in the leverage of an
integrated solution. In the case of CloudBench, the Ganglia framework is
used. Ganglia’s architecture has two types of processes: a ganglia monitor
(gmond) that can trigger the collection an then the sending of the
performance data and ganglia meta daemon (gmetad) which aggregates
data from multiple gmond processes (running on multiple VMs). The
performance information is exchanged through an XML data
representation, transported (typically) over UDP. Ganglia has native
collectors for VM Operating System metrics, like CPU, Memory, Network
and Disk I/O (the data collected is very similar to what would be obtained
by utilities like ps, mem, sar, netstat and iostat). In addition to that, a
special utility (called “gmetric”) is provided to allow any arbitrary value to
be inserted on the same transport data stream used be the native
collectors. In case of CloudBench, this utility is used to report application-
specific metrics (e.g., Application servers Performance Management
Infrastructure queries or SQL queries to a database) back to the VM in

Cloudbench Host

Cloud

Application

Instance

VM Driver

VM "role 1"

(e.g. WAS)

VM "role 2"

(e.g. DB2"

Performance

Reporter

Metric Store

Server

Metric

Store

Performance

Collector

Ganglia

Monitor

(gmond)

Ganglia

Monitor

(gmond)

Ganglia

Monitor

(gmond)

Ganglia

Meta

(gmetad)

VM Driver

Performance

Collector
Ganglia

Monitor

(gmond)

Ganglia

Meta

(gmetad)

0

Guest OS metrics from all VMs on the AI

Application specific metrics from each VM on the AII

1

Aggregate

data

polled

3

Put data

points

4

Get data

points

2

Processed

data

O S G C L O U D W G

REPORT TO OSSC 47

charge of concentrating all data. The Figure 5 presents the runtime
performance data collection flow.

The “Performance Collector” continuously reads (in fact, pulls)
performance data from the gmetad concentrator (both running on the
“driver” VM) and writes it to the Metric Store. While Ganglia is used here
mainly for its ease of use and maturity, there is nothing unique to it that
prevents other frameworks from being employed with the same effect.
Frameworks like OpenTSDB or Collectd could be used in the very same
way that Ganglia is. From the CloudBench perspective, all that is required
is the delivery of performance metrics to a “driver” VM, where they could
be properly read by the “Performance Collector” process and written to the
MS.

How does CloudBench incorporate new benchmarks and

workloads?

During an AI creation, CloudBench obtains a list of VMs with specific
“roles”, being each “role” associated with a set of actions to be
automatically performed. For instance, a VM with a “role” DB2 requires a
database instance of this type to be automatically started there. Therefore
a script that executes the startup of this application has to be provided for
CloudBench. While CB will automatically transfer the script to the
appropriate VM, execute it, react appropriately according to the execution
results (e.g., re-trying if the script signals failure), the actual script is highly
application (and even VM Operating System) dependent, and has to be
provided by the owner of the benchmark being added. A similar case is to
be made for the actual benchmark process. A new benchmark also requires
an appropriate execution script that can then be automatically executed by
CloudBench. Typically, such script should take as parameters the load
intensity and the load duration. This second is optional, since CloudBench
can be programmatically instructed to unconditionally kill a benchmark
process instance with a given load level before starting a new one.

The requirements for a new benchmark can be summarized as follows: for
each VM application that composes an AI, supply a start/re-start script,
and supply also a benchmark execution script.

CloudBench Instantiation on Amazon EC2

In order to deploy CB on a public Cloud like Amazon EC2, it is highly
recommended that all CloudBench architectural components are co-
located within the same Cloud. This manner the CB Host, housing the CLI
processor, the AS daemons (and the associated short-lived AI creation
processes) and performance reporter process, can have direct network

O S G C L O U D W G

REPORT TO OSSC 48

access to the VMs belonging to the newly created AIs. This access is of
importance during the creation of new AIs: the “application instance
creator” process requires a very brief SSH access to the AI’s VMs at the
beginning of its lifecycle, in order to startup every application component
of a given benchmark before actual load can be applied to it.

Given the fact that each individual AI’s “driver VM” requires constant
access to both the Object and Metric Stores throughout its whole lifecycle
(for the performing of “load management” and performance collection
activities), there is a clear benefit for CB’s function in the placement of such
components in close proximity with the AIs, with the lowest possible
network access latency.

Collocating all three CB components on a single VM on the same public
Cloud has two additional advantages, in addition to remote connection
performance. The first is the ease of deployment, since there is no need for
security configuration changes on the local network (as there would be in
the case CB components are not co-located in the same Cloud) to allow the
VMs to reach the Object Store and Metric Store (again, with a much higher
latency anyway). The second advantage is on the potential cost savings.
While public Clouds normally charge for data traffic that crosses the
boundary of its premises, they do not have the same restriction for traffic
between co-located VMs.

The CloudBench code is fairly self-contained – a single directory contains
all python modules required for its operation – with a few third-party
python modules that could also be easily installed on a newly instantiated
VM on EC2. In addition to that, the fact that both the Object Store and
Metric Store use the same key-value store (Redis) makes the deployment
of these on a newly created VM fairly simple. Alternatively there is always
the possibility of the use of an already configured “CloudBench template
VM”, available on EC2.

Metrics

The mapping between each specific metric collected by CloudBench during the

execution of a meta-benchmark and its role in the assessment of specific Cloud

characteristics is the following:

Used in the assessment of “application performance” characteristic of a Cloud,

this metric is sent, by the supplied “execution script”, after every execution of

an individual benchmark on an AI (an “execution” represents the running of an

individual benchmark with a given load intensity level, for a given load level

duration)

Very similar to Throughput.

Throughput:

Response Time:

O S G C L O U D W G

REPORT TO OSSC 49

Used in the assessment of “operational performance” characteristic of a Cloud,

this metric is collected by the CloudBench Host, during the creation of a new

AI. The time to create a new AI is broken down in specific sub-components,

like the time between the VMs’ creation request and the VM’s starting, and the

time to have the applications on the VM started.

Also used in the assessment of “operational performance”. Given the fact that

CB does not have provisions to increase the “size” of AI (i.e., the number of

VMs that composes an AI) automatically, the only metric collected here - time

to create a new AI - is exactly the same as previous one.

All metrics are collected and stored on flat csv files for later analysis. From

there, parameters like average, standard deviation (and thus coefficient of

variation) can be quickly extracted.

How is CloudBench different from SPECvirt?

A “SPECvirt Tile” seems to be the equivalent of a single CB scenario, with a
fixed number of AIs. In this sense CB is more flexible given the fact that a
scenario is composed by any number of different AIs, each with its own
load variation characteristics. The key differences are that CB:

 Contributes VM life cycles
 Number of VMs can be varied in any way we want

Elasticity:

Agility:

O S G C L O U D W G

REPORT TO OSSC 50

Appendix D. Bibliography

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010).

Benchmarking Cloud Serving Systems with YCSB. Santa Clara, CA, USA:

Yahoo! Research.

Dumitras, T., & Shou, D. (2011). Toward a Standard Benchmark for Computer

Security Research. Carnegie Mellon University.

Mell, P., & Grance, T. (2011, Sept). NIST CSRC Special Publications.

Retrieved from NIST Computer Security Division: Computer Security

Resource Center: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf

